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Executive Summary 

Tank ships sail a large share of their time in ballast conditions, depending on their trading 

patterns up to half of the time at sea.   

The aim of this project use case is to test the usage of machine learning and big data 

approaches based on existing historical ship operation data to improve energy efficiency on 

ballast trips. Founded on the analysis, guidelines on how to improve the energy efficiency of 

ships can be made by collecting real-time operational data.  

The energy needed to propel a vessel is largely dependent on the total weight of it and of the 

speed it is operated at. Substantial savings in energy consumption and correspondingly to 

reduced fuel costs as well as to reduced emissions can be achieved by either lowering the 

speed or optimising the load taken onboard. 

Ships are normally designed for optimal operation at one single or a few defined load 

conditions. By analysing off-design conditions (such as partial load, slower speed, and ballast 

conditions), significant improvements in efficiency can be obtained. Figures achieved by 

different means range typically from 10 to 40 percent by improving the crew’s methods to load 

and operate the vessels, increasing resistance and delivered power [1]. Looking at operational 

regimes of tankers, the crews can only to a limited degree adjust the operational conditions 

for the loaded voyages when on hire, while when sailing off-hire or in ballast voyages allows 

for certain flexibility.  

Building on a grey machine learning model with an underlying hydrodynamic model of the 

vessel, the data analysis provides a guidance to the mariners on summer ballast conditions that 

allow for fuel savings. The conditions derived by the model have been demonstrated by the 

shipping operator in full scale trials. Based on the analysis made, summer ballast conditions 

imply a reduction in fuel consumption in the range of 10-14% on the feasible trips. 

 

Table 7 Savings in required power when sailing at 12 kts in different load and weather conditions. 

VOY. NR. 38/20 45/20 39/20 44/20 

TOTAL LOAD 

(APPROX.) 
1500 ton 1670 ton 1870 ton 1920 ton 

WIND CONDITION Calm Slight Slight Moderate 

SAVINGS AT 12 KTS 14% 3,5–6% 7–9% 4–5% 

 



 

TRIM AND BALLAST OPTIMISATION FOR A TANKER BASED ON MACHINE LEARNING  

Gothenburg, Sweden  

2020-12-21 

 
 

   
  3 

 
 
 

The reduction in resistance and power needed to propel the vessel at 12 kts seems to be 

highest at light load conditions and in calm weather, which corresponds well with sound naval 

architectural theories.  

Savings with reduced ballast do not only have an impact as savings when under way, but also 

lead to a reduced need for pumping of water into and out of the ballast tanks and for ballast 

water treatment plants both of which are energy consuming. Energy savings translate to 

positive reductions of both cost for fuel and in amount of emissions such as CO2 and other 

GHG. Further strengthening the business case is the benefits of reduce load and run time on 

ballast water pumps and on the ballast water treatment system which reduces the costs for the 

upkeep of the vessel.  

Besides the observations on the effect of ballast condition it was also noted that the effect of 

docking of the ship and cleaning of hull is clearly visible in data (>10% on power needed in the 

initial period afterwards). This can be used as an indicator for crew and management to plan 

hull cleaning. 

Bitumen tankers such as ARDEA are designed to carry heated cargo and their tanks are heavily 

insulated, this gives them a lot of extra buoyancy compared to conventional tankers as they 

cannot have cold ballast water tanks adjacent to the heated cargo tanks. This implies even 

greater possibilities for ballast water optimisation on a larger conventional product or chemical 

tanker. 

Based on the experience from building models and machine learning algorithms obtained in 

this study it is concluded that many times it is recommended to use simple and robust models 

such as decision tree random forest or variations of linear regressions. Grey box models are 

more complex to be implemented but might give faster results (shorter data collection period). 

A grey box model is not needed for all purposes. The accuracy is considered enough for most 

applications. The value of reliable, high resolution data and data processing is substantial. The 

methodology used in this study can be applied also in other settings and for other data 

processing. The benefit of collecting and processing operational and voyage data has large 

potential for quick pay-back on time and resources invested. 

 

The study has been successful in bringing together the data from ship performance monitoring 

system, ship operations and naval architectural knowledge. It has set up models for canvasing 

the data and identifying low hanging fruit in energy efficiency that is of much value to the ship 

operator. By giving crew and manager the possibility to get real-time feedback on the effects 

of adjustments in ships operational conditions they can better optimise the energy consumed 

on board. The results and recommendations have been put together in guidelines for improved 
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energy efficiency based on collected data relating to both improved decision support tools and 

for ship operational procedures. 

ECOPRODIGI is an Interreg project increasing eco-efficiency in the Baltic Sea region 

maritime sector by creating and piloting digital solutions in close cooperation between 

industry end-users and research organisations. The aim of one of the project use cases is 

to test machine learning and big data approaches based on existing historical ship 

operation data to improve energy efficiency on ballast trips. Based on the analysis, 

guidelines for how to improve energy efficiency of ships can be made by collecting real-

time operational data. The hypothesis was that a reduction in resistance leads to reduced 

power needed in light ballast conditions.   
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1. Introduction Big-data analysis of existing data for improved 

environmental performance and ship efficiency  

Our approach is that there is more and more data collected on ships, but the added value and 

operational changes made possible by the data has been limited so far in shipping. Considering 

the data analysis as the crucial part allows for substantial savings. We limit ourselves at this 

stage to ballast voyages as these are not as contractually binding as loaded voyages when it 

comes to speed reduction, etc. 

 

1.1 Background 

All forms of transportation impact the environment in one way or the other. Regardless of how 

a shipowner decides to handle the environmental impact from his shipping activities the 

benefit of energy conservation should be seriously considered. Reducing the energy used 

corresponds directly to reduced cost savings as well as emissions. When adding abatement 

technologies or switching to alternative energy sources the cost of operations increases as the 

oil-based fuels are less costly. 

Besides higher utilisation and filling grades, one of the ways to improve energy efficiency is to 

limit the amount of energy consumed per hour and goods transported. This study focuses on 

identifying and quantifying best practices in operations based on data logged onboard. 

The energy needed to propel a vessel is largely dependent on the total weight of it and of the 

speed it is operated at. Substantial savings in energy consumption and correspondingly to 

reduced fuel costs as well as to reduced emissions can be achieved by either lowering the 

speed or optimising the load taken onboard when on ballast voyages. Besides the direct 

savings in energy needed for pumping and treating ballast water there are indirect savings of 

sailing in a lighter condition with less weight onboard as the submerged area or wet surface of 

the vessel is smaller at lower drafts.  

Specifically, the energy usage related to ballast water operation is studied in more detail, as 

ballast neither contributes to the ship owners’ profit nor adds any value to the transport system. 

The potential impact of ballast water handling is deemed as rather low in the shipping industry. 
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1.2 Aim and Scope 

Purpose of the study is to demonstrate how value for business as well as for emission control 

can be created from auto-logging of high frequency operational data from ships. 

The aim of the use case is to use machine learning and big data approaches based on existing 

historical ship operation data to improve energy efficiency on ballast trips and what else can 

be learned when adding additional data. Based on the analysis, guidelines for how to improve 

energy efficiency of ships can be made by data collected from real-time operational data.  

1.3 Method 

The study has followed a basic interactive method of identifying a potential for improvement, 

finding ways to measure the data, evaluate the data, apply improvements, and analyse the 

effects. The conclusions can then be the basis for further improvements.   

 

The method consists of the following parts: 

 

1) Data quality checks (anomaly detection, filtering) 

2) Building a hydrodynamical model for machine learning  

3) Machine learning of model derived above, regression analysis and optimisation based 

on ballast and trim 

4) Analysis of results based on different optimisation approaches in order to achieve 

optimised ballast water intake and trim 

5) Dedicated ballast conditions tested on ARDEA based on the model prepared by 

RISE/SMTF 

6) Uncertainty analysis and recommendations for future development 

7) Derive general guidelines based on the analysis performed and describe potential for 

energy savings 

Identify 
Potential

Measure

EvaluateApply

Analyse 
Effects
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1.4 Delimitations 

The analysis and guidelines are based on the data available from the studied ship. The data is 

collected by existing performance monitoring system and its selection and installation has not 

been a part of the study.  

Missing data sources that have an influence on the required power and resistance such as 

currents, etc. are not included in the analysis. When impact is known and assumed to have a 

substantial effect (such as in situations when the vessel is travelling on rivers) such data has 

been excluded. The effect of fouling and marine growth has not been included in the analysis 

of ballast journeys.  

Physical trials have been partly performed; continuous tests could not be performed due to 

manning situation onboard the vessel when crew changes are affected by COVID-19 

restrictions.  

The study focuses primarily on ballast voyages as these are not as contractually binding as 

loaded voyages and allow the Master larger discretion when it comes to speed reduction, etc. 
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2. Operational and Technical background 

2.1 Ship Operation Optimisations Studied 

Ballast Optimisation 

A ship’s purpose is the carriage of cargo from one port to another, not ballast. Ships are usually 

designed to carry the maximum amount of cargo within given constraints. As the flow of goods 

normally is unbalanced a ship will arrive with a full load of cargo, but seldomly leave as heavily 

loaded. In the case of tanker shipping and the carriage of wet bulk products a tanker will 

frequently leave the port of discharge without any cargo at all. As the ship will be lighter it will 

lay shallower in the water and have a smaller draft, this will affect the vessels hydrodynamic 

and seakeeping performance. However, to improve the vessels seakeeping the crew will take 

onboard seawater as ballast and this is thus referred to as a voyage in ballast condition. The 

amount of ballast water taken onboard is rarely standardised or dictated by written guidance 

or computer support. It will be more dependent on the individual crews experience from 

previous sailings and on the weather and sea conditions expected on the coming voyage. Or 

simply on the available volume of the ballast tanks. When adverse weather conditions and sea 

states are expected it is good seamanship to load the vessel as much as possible and increase 

the draft to improve the stability, pitching period, rolling period and vessels seakeeping. 

However, during calm weather and sea states it is possible to sail the vessel with a lesser 

amount of ballast onboard for as long as the manoeuvrability of the ship is maintained. Tankers 

are in loaded conditions typically course-stable and in ballast conditions course unstable. 

By considering the off-design conditions (partial load, slower speed and ballast conditions), 

significant improvements in efficiency at these other design points may be realised with little 

or no impact on the design draft performance. For example, the Hamburg Ship Model Basin 

(HSVA) reports a 12 to 16 percent improvement in resistance and delivered power for a 70 

percent design draft, 80 percent design speed condition. This was achieved by optimising just 

the bulb and extreme forebody, without any loss of performance at the design condition. This 

gives an indication on how large variations can be achieved by optimising the conditions. The 

speed differential between the full load condition and ballast condition for tankers built in the 

last ten years ranges from about 0.7 knots to 1.2 knots. [2] 

Trim optimisation  

A vessels trim is the difference in draught between the aft and the fore of a vessel. At even keel 

the vessel is uniformly submerged in water while a positive trim is when the vessel is lighter in 

the forward part and the vessel has a reclined posture in the water, while a negative trim is the 
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opposite, the forepart is deeper in the water than the aft. Changing the trim of a vessel while 

keeping the same displacement is called trimming the vessel. Optimal trim is when the power 

needed at a certain displacement and speed is lowest compared to other trim angles. 

Optimising a vessels trim in the water has proven to have significant effects on the 

hydrodynamic flow along the hull and results in improved or degraded speed-power relations. 

It is not uncommon for energy saving of 10% or more between favourable and unfavourable 

trims [3] [4]. Trim optimisation is often performed based on model tests. Restrictions of 

optimum trim are given by the general arrangement of the vessel, where cargo, fuel, freshwater 

and ballast tanks’ size, and positions only allow for certain trim angles. 

Ballast water intake  

The project team’s experience is that the energy consumption impact off ballast water intake 

on board tanker vessels is not commonly considered by the vessels crew and master. The 

normal procedure is to fill the vessel’s ballast tanks to 100%, with reference to weather and 

vessels manoeuvrability.  However, shipowners confirm that fuel consumption will rise with 

more ballast onboard. This is due not only to increased energy need for propulsion due to 

increased weight and friction, but also on energy needed for ballast water treatment. The scope 

to use big data analysis for better energy efficiency is interesting for the shipowners. Short 

interviews with two technical managers for ship owners (Ektank AB and Furetank AB) confirms 

this view [5].  

Operational energy conservation requirements 

Regulatory measurements to monitor shipping’s emission of greenhouse gases (GHG) have 

recently been introduced in parallel by both the IMO (International Maritime Organisation) and 

the European Union. The EU MRV-scheme (Monitoring, Reporting and Verification) focuses on 

CO2-emissions while the IMO DCS (Data Collection System) gathers data on fuel consumption 

on a high level. Initially both schemes only stipulate monitoring and reporting, and no 

mechanism for curbing or penalising emissions and energy usage.  CO2 and other GHG 

emissions can be lowered either directly by lowering the energy consumption onboard 

(operational or technical), changing fuel type or indirectly by usage of various abatement 

technologies. Data collection systems as the one used in this project provided by Blueflow, 

cannot only be used for data collection, but even for reporting according to the rules and 

regulations above. 
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Energy conservation requirements for newbuilding 

Since 2011 all newbuildings are essentially required to meet the Energy Efficiency Design Index 

(EEDI) for new ships, and the Ship Energy Efficiency Management Plan (SEEMP) as regulated in 

The “International Convention for the Prevention of Pollution from Ships (MARPOL 73/78). The 

index relates emissions of CO2 to the preformed transport work and is calculated differently 

depending on ship and cargo type. The IMO legislation on the EEDI is currently moving into its 

4th and last phase aiming to increase energy efficiency by up to 30% in 2025 on newbuildings 

compared to 2013 basis. 

The latest official evaluations [6] show that most ship types, despite large container vessels, 

have just improved efficiency by only up to 3%. The drivers towards reduced emissions are 

therefore probably found in operational measures including ship speed.  

 

2.2 ARDEA – Vessel details 

 

Figure 1: ARDEA Bitumen tanker alongside in 2012. Credits: Crew Chart Ship management AB. 
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The following details are fetched from the Clarkson intelligence system, unless stated 

otherwise. ARDEA is an asphalt/ bitumen tanker with the following dimensions: 

Main particulars 

Length over all (m) 99.9 

Length, pp  (m) 95 

Beam  (m) 16 

Breadth mld.   (m)  15.86  

Length over all (m) 99 

Design draught (m) 5.7 

Gross Tonnage: (m) 4621 

Deadweight  (t) 4972 

Year of build   2012 

Depth mld.  (m) 9.0 

Draught design  (m) 6.1  

Draught scantling  (m) 6.5 

Cargo capacity  (m3) 4 300 

HFO tanks   (m3) 350 

DO tanks   (m3) 75 

FW tanks   (m3) 60 

Water ballast  (m3) 2 000  

Main engine   (kW) 4 000 

Aux engines   (kW) 3 x 590 

Shaft generator  (ekW) 760  

Bow thruster   (kW) 700  

Cargo pumps  (m3/h) 4 x 350  

Ballast pumps  (m3/h) 2 x 400  

Accommodation  (pers) 16 pers 

Service speed (7.8m) 85% MCR (knots) 14.0 

 

Standard Details 

IMO Number 9503902, Built at Wuhan Nanhua HJ delivered in Apr 2012, BV Classed, Ice 

Strengthened IA Class, Design FKAB I12 by FKAB.  

Specialist Details 

Cargo Capacities of 4,300 m3. and 27,046 Barrels.  
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Equipment Details 

MAIN ENGINE 1 x Diesel - Ningbo C.S.I. Power G6300ZC16B - 4-stroke 6-cyl. 300mm 

x380mm bore/stroke 4,000mkW total at 600rpm. 

AUXILIARY 3 x Aux. Diesel Gen. - Caterpillar 3412C - 4-stroke 12-cyl. 137mm x 152mm 

bore/stroke 1,770mkW total at 1,800rpm driving 3 x ac generator(s) at 1,770ekW total, 

(2,212.50kVA total) 440V at 60Hz. 

OTHER POWER EQUIPMENT 1 x Shaft Generator (PTO) at 760ekW total, ac, 440V at 60Hz. 

PROPULSOR 1 x CP Propeller (Aft Centre) (mechanical) (Bronze), 153rpm. Diameter: 3700 mm 

[Ref: Ship management]. POS, PROPULSOR 1 x Pos, Tunnel Thruster (Fwd.) (electric) at 

700ekW total AC. 

Eco Details 

ENVIRONMENTAL EQUIPMENT 1 x BWTS - Ballast Water Treatment System - Alfa Laval 

PureBallast 2.0 Ex 500. 100 – 500 m3/hr @ 132kWh.  

The total power consumption for Ballast Water Treatment System and 1 Ballast Pump is 187 

KW. Ballasting and De-Ballasting operation make almost the same power consumption as 

both operations utilise both AOT unit. ARDEA Ballast pump capacity for 1 pump is 400 m3/hr 

at 3.5bar [7]. 

 

Specific Fuel Oil Consumption: 

Main Engine: SFOC 203 g/kWh [8]. 

Gensets: SFOC 200 g/kWh [7] 
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Figure 2: General arrangement based on FKAB basic design, Source: Product sheet by FKAB [9] 

 

Figure 3: Tank plan of ARDEA showing locations of ballast tanks 
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Characteristics of bitumen tankers  

Bitumen tankers such as ARDEA are designed to carry heated cargo and their tanks are heavily 

insulated, this gives them a lot of extra buoyancy compared to conventional tankers as they 

cannot have cold ballast water tanks adjacent to the heated cargo tanks. To compensate they 

need additional ballast water capacity which results in a ballast-to-cargo relationship for 

ARDEA 2000 ton / 4972 dwt or 40%. For a typical product/chemical tanker the relationship is 

approximately 45% of the deadweight as less potential cargo space is lost in insulation. This 

implies even greater possibilities for ballast water optimisation on a larger conventional 

product or chemical tanker. 

The vessel as such is small and has a limited possibility to vary trim angles in ballast conditions 

due to the tank arrangement that is used for ballasting, as shown in the figures above (general 

arrangement and tank plan). If certain tanks are used for ballasting, the propeller is no more 

completely submerged which results in poor propulsion efficiency. 

Trading routes 

M/T ARDEA is trading in Northern Europe. Ports of call are predominately in the North Sea and 

the Baltic Sea, some voyages in the studied period were towards destinations somewhat further 

away such as to Iceland.  

 

Figure 4 Area of operation - typical voyages of M/T ARDEA. Data from BlueFlow system.  
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2.3 Data collection, parameters, and data quality 

Data logger used 

The project has made use of an existing data collection platform linked to the vessel. The 

platform is provided by Blueflow Energy Management.  

The energy management system helps to manage the vessels energy sources. It presents 

consumption and energy efficiency data on graphical user interfaces onboard the vessel. It 

collects and sends data to a cloud platform for secure storage and data analysis. The system 

consists essentially of two parts, Blueflow Online and Blueflow Onboard. 

The Onboard module integrates with various other onboard systems and flowmeters to 

monitor fuel and energy consumption and other parameters in real-time. Parameter data are 

sent to an online service for reporting, analysis and verification. These findings can be used to 

reduce energy consumption, make diagnostics, take comprehensive reports and increased 

knowledge of a vessel’s performance. 

In this project, only the Blueflow online data have been used. [http://www.blueflow.se/] 

Input data 

Data has been provided by the ship owner operating bitumen tankers with 1 second resolution 

covering various energy consumers, load cases and environmental parameters under 69 

months. Existing data has been extracted to compare fuel consumption in relation to ballast 

and trim. 

Parameters used are: 

• Time 

• SOG - Speed over ground  

• UKC - Under Keel Clearance  

• Trim and list [deg] 

• Heading [deg] 

• Location (Latitude and Longitude) [deg] 

• Ballast weight (ton) – total value, no distributed information (tank locations) 

• Fresh water (ton) – total value, no distributed information (tank locations) 

• Fuel onboard (ton) – total value, no distributed information (tank locations) 

• Total load [ton] – total value, no distributed information (tank locations) 

• Power output Main Engine, [kW] 

• Power output Shaft generator, [kW] 

http://www.blueflow.se/
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• Power output Auxiliary Engines [kW] 

• Power output boilers [kW] 

• COG, Course over Ground (course/heading) 

Fuel oil consumption Main Engine (kg/h) Data quality 

The data gathered by the energy performance monitoring system is extensive and detailed. It 

is deemed to generally be of good quality when checked. Some anomalies have been detected 

and those data points have been omitted from the study.  

Unfortunately, there is no good measurements or data available for the currents on most 

commercial vessels. This was even true for ARDEA, which gives some uncertainties to the 

analysis and thus the effect of it on speed through the water and the energy consumption.  

 

2.4 Calculation and Assessing the EEDI Index Ship Energy Efficiency for ARDEA 

The reference EEDI is calculated by: 

Reference EEDI = a*b-c 

For tankers, the following values are valid [10]: 

a = 1218.80  

b = DWT = 4972 t 

c = 0.488 

 

This results in a reference EEDI value for ARDEA of 19.14367 gCO2/ton.mile 

ARDEA’s trading area is primarily within the SECA (Sulphur Emission Control Area) and she runs 

mainly on marine diesel oil. Emissions based on the consumption from the vessel per nautical 

mile are therefore calculated based on the following values given in the 2018 EEDI guidelines 

[11]: 

Table 1 Carbon content and specific energy for different marine fuels according to 2018 EEDI Guidelines. 

Fuel type  Carbon Content  EFf (g CO2/g fuel)  

HFO  0,8493  3,114  

MDO  0,8744  3,206  

LNG  0,7500  2,750  

Methanol  0,3750  1,375  

LSHFO 1.0%  0,8493  3,114  
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Due to the specific requirements for vessels to be classed and suitable for trading in ice-

infested waters the EEDI requirements include specific adjustments related to vessels that are 

ice classed according to the Swedish-Finnish Ice Class, see Table 2. ARDEA fulfils the 

requirements for Ice Class IA. 

Table 2 EEDI coefficients for Ice Classed vessels.  

 

As ARDEA was built 2012, before the requirements came into effect 1st January 2013, she is not 

subject to them. However for comparison the EEDI for ARDEA is calculated to 21,23 using 

Danish Shipping’s EEDI Calculation tool [12] and verified by authors own EEDI calculations 

according to IMO MARPOL ANNEX VI regulations. Thus, ARDEA would not fulfil the stipulated 

EEDI-value had she been built after they came into effect. 

EEOI Guidelines Circ 684 

The Guidelines present the concept of an indicator for the energy efficiency of a ship and can 

be used to establish a consistent approach for voluntary use of an EEOI. It is supposed to assist 

ship-owners/ operators in the evaluation of the performance of their fleet with regard to CO2 

emissions. The Guidelines are only adversarial and present a possible use of an operational 

indicator.  

Ship-owners are invited to implement either these Guidelines or an equivalent method in their 

environmental management systems. 
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➢ j is the fuel type 

➢ i is the voyage number 

➢ FCj is the mass of consumed fuel j at voyage I 

➢ CFj is the fuel mass to CO2 mass conversion factor for fuel j 

➢ mcargo is cargo mass (tonnes) or work done (number of TEU, passengers, etc.) 

depending on ship type. 

➢ D is the distance in nautical miles corresponding to the cargo carried or work done 

EEOI is normally calculated for one voyage but an average EEOI for a number of voyages can 

be carried out as well. 

The EEOI for ARDEA for the whole dataset is 0.4 kg CO2/(tons x nautical miles), for the loaded 

voyages only 0.06 and for the ballast voyages 106. 

 

2.5 Vessel Energy Consumption 

Tankers and Bulkers in general operate at modest speeds between 10-15 knots and spend 

more time at layby or at anchorage waiting for charters compared to linear shipping services 

such as container and RoRo-ships. Bitumen tankers such as ARDEA are subject to the seasonal 

variations as the demand for asphalt is lower in the colder period of the year. This allows for 

more time on an annual basis for service and more frequent dockings of the vessel. This 

opportunity is used for hull cleaning and for de-coking (removal of built up solid residues of 

petroleum coke in the cargo tanks) which otherwise hampers the load intake.  

Based on the voyage data collected the vessel spends around 44% in port/ at yard/ at 

anchorage, 30% on loaded voyages and 26% in ballast conditions. The share of time that the 

wind and wave conditions (wind < 6m/s) could allow for summer ballast voyages is 42% of the 

ballasted voyages or 11% of the total time. 

In ballast conditions, the energy is consumed mainly for propulsion purposes (78%), for boilers 

(5.5%), for the auxiliary engines (10%) and for the shaft generator (5.9%). 
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In loaded conditions, the energy is consumed mainly for propulsion purposes (75.2%), for 

boilers (10%), for the auxiliary engines (14.5%) and for the shaft generator (0.3%). 

There is a high variation of usage of auxiliary power. While the average in ballast conditions is 

about 16%, it can raise to up to 60% as maximum. These values are 19% and 64% in loaded 

conditions. 
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3. Machine Learning algorithms 

The machine learning used in the project are consisting of an underlaying “physical” 

hydrodynamic model that is trained to the data. The hydrodynamic model and the machine 

learning algorithms used are described in the chapters below. 

 

3.1 Model description 

Various approaches have been used to model the vessel based on the data. The main steps 

that have been used are the data selection, pre-processing, transformation and interpretation/ 

evaluation, these are shown in Figure 5. 

Figure 5: An Overview of the Steps That Compose the Machine Learning Process, adopted 

from [13] 

Selection 

The data selection was given by the main research question, i.e. optimised ballast conditions 

for reduced engine load and fuel consumption. Nevertheless, some of the tests in the project 

have also involved including the fully loaded vessel, to build a representative model of the 

vessel considering the ship properties for a model covering several load cases. The label to be 

predicted is the engine main delivered power of the vessel [kW] minus the load that is taking 

off by the shaft generator [kW]. Based on the data and correlations, there is a strong relation 

between fuel consumption, engine load and delivered power. Therefore, this has not been 

modelled separately.  
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Pre-Processing 

The data from ARDEA have been averaged over 10 minutes, which is typically a statistical 

measure for a.o. environmental data and is deemed representative for a time span. It allows to 

remove outliers and short-term variations in data. It also gives an indication on the variability 

of the data, as the standard deviation for the 10 minutes interval where included as features. 

The data has then been filtered and “known” faulty measurements have been excluded (e.g. 

values above engine maximum load). The ship standing still has been removed from the data 

as well. The idling of the main engine has been removed from the engine loads, in order to 

only describe the engine load due to sailing of the vessel. A total 350 635 data points existed 

in the raw data, 164 194 entries remained for all loading conditions and 74 182 for the ballast 

conditions.  

Transformation 

The transformation of the data into a feature and label set of data was performed in this stage. 

In order to optimise the model accuracy, variations with the feature selection have been 

performed to describe the physics as much as possible in the regression models, while in the 

decision tree all “known” features have been included. In the following description, the 

following letters are used to describe feature and label: 

X - Feature or predictors  

Y – Label or response variable  
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3.2 Hydrodynamic model 

Water resistance  

The hydrodynamic model, being the base of the machine learning algorithm is based on a 

model for still water resistance in different draft conditions.  

 

Figure 6: Ship resistance at deep water for different ballast conditions 

The deep water resistance, RTdeep , is obtained by interpolating the curves in Figure 6, in which 

the deep water resistance for draughts of 0.6, 0.8 1 and 1.1 times the design draught have been 

à priori estimated, based on regression methods of publicly available ship resistance data. The 

draught of the vessel is calculated by assuming that the design draught corresponds to a total 

load of 4000 metric tons.  

The water resistance in shallower water, RT, is given by  

RT=(1+0.46 zet Fnh) RTdeep 

where the shallow water coefficient, zet, is given by  

zet=
draught

h-draught
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in which h is the water depth. The Froude number, Fnh, is defined as  

Fnh=
V

√gh
 

Added resistance in waves has been modelled based on the 10 minutes standard deviation of 

the trim change by the following function:  

RAddWave=(CAddWave+CTrim Trimstd) Displacement 

The total hydrodynamic or water resistance is then given by  

RTotal=(𝑅AddWave+RT)  

Wind force  

The water resistance term in the previous section is assumed to account also for the air 

resistance at still conditions. The additional force from wind is calculated through 

𝐹𝑤𝑖𝑛𝑑 = 0.5 ρ 𝑉𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑤𝑖𝑛𝑑
2 A𝑤𝑖𝑛𝑑CX − 0.5 ρ 𝑉𝑣𝑒𝑠𝑠𝑒𝑙

2 A𝑤𝑖𝑛𝑑CX  

Here 𝑉𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑤𝑖𝑛𝑑  is the wind speed as measured on the moving vessel. The transversal cross 

section A𝑤𝑖𝑛𝑑 is set to 500 m2  and the coefficient CX is shown in red in Figure 7. 

 

Figure 7: Wind coefficients used in the model. 
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Modelling the propeller 

The variable pitch propeller is modelled through a somewhat simplistic relationship 

CT = 𝐶𝑝𝑖𝑡𝑐ℎ

𝑃0.7𝑅

𝐷
+ 𝐶𝛽  𝛽  

where CT is the thrust coefficient defined by  

T=CT ρ 0.5 [VA
2
+ (0.7π

RPM

60
D

2)] 0.25πD
2 , 

 𝑃0.7𝑅 is the propeller pitch and 𝛽  is the advance angle given by 

𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛2 (0.7 π
RPM

60
𝐷, 𝑉𝐴) . 

Here the advance speed, 𝑉𝐴, of the propeller is set to  

VA=(1-w) 𝑉𝑣𝑒𝑠𝑠𝑒𝑙 

with w is set to 0.27 based on literature.  

The afore-mentioned coefficients 𝐶𝑝𝑖𝑡𝑐ℎ and 𝐶𝛽 are empirical to the model, and it is believed 

that these parameters compensate somewhat for errors in the estimates of some of other 

parameters (such as in the estimate of w above for example). In order to determine 𝐶𝑝𝑖𝑡𝑐ℎ and 

𝐶𝛽 it is assumed that no acceleration are present (as well as only very limited number force-

contributions, most notably disregarding the impact of the sea state) such that 

𝐹𝑡ℎ𝑟𝑢𝑠𝑡 = 𝐹𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 −  𝐹𝑤𝑖𝑛𝑑 

where the thrust force, 𝐹𝑡ℎ𝑟𝑢𝑠𝑡 ,  relates to the thrust, 𝑇 by  

𝐹𝑡ℎ𝑟𝑢𝑠𝑡 =  (1 − 𝑡) 𝑇 

where 𝑡 has been set to 0.17.  

We find that setting 𝐶𝑝𝑖𝑡𝑐ℎ = 0.3 and 𝐶𝛽 = −0.012 gives reasonable agreement with the data. 
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Predicting fuel consumption 

A typical use case for the model is to predict the fuel consumption of the vessel given the 

speed of the vessel as well as inputs such as the wind. In order to accomplish this, we need a 

way to translate between the pitch ratio 
𝑃0.7𝑅

𝐷
 and the fuel consumption. Figure 8 illustrates that 

main engine power depends on a combination of propeller pitch and vessel speed. The actual 

model formulation is slightly convoluted since it instead uses a combination of  
𝑃0.7𝑅

𝐷
 and 𝛽 in 

order to predict an effective torque coefficient, 𝐶𝑄 , from which the engine power is calculated. 

The underlying principle is however very much the same as just fitting a 2-dimensional curve 

to the data in Figure 8. Figure 9 shows how a relation between fuel consumption and engine 

power can be derived directly from the data and this concludes the current model formulation. 

 

 

Figure 8: Predicting engine power from a combination of propeller pitch and vessel speed 
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Figure 9: Predicting fuel consumption from engine power 

 

3.3 Machine learning models 

Based on the data various machine learning algorithms have been used. Different methods 

have been used to get a broad understanding, all from grey box models with an underlying 

hydrodynamic resistance model to traditional regression and black box models. These are 

described in short below. All use an approach as shown in the figure below: 

 

Figure 10: Approach for optimised ballast conditions analysis and savings 
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Grey Box Model 

In mathematics, statistics, and computational modelling, a grey box model combines a partial 

theoretical structure with data to complete a more sophistical model. The grey box model 

consists of the hydrodynamic model described above as well as a regression model of the 

parameters used for the variables not used in the hydrodynamic model such as trim, detailed 

loading data, etc. This implies that the machine learning as such does not only use the data 

from the measurements, but also from the hydrodynamic model.  

Linear Regression Models 

Various analyses have been performed to derive best possible results. The features of the 

model have been varied as well as the algorithms for the linear regressions. Common for the 

linear regression models are that the Ordinary Least Squares procedure seeks to minimise the 

sum of the squared residuals. This means that given a regression line through the data, one 

calculates the distance from each data point to the regression line, square it, and sum all the 

squared errors together. This is the quantity that ordinary least squares seek to minimise. 

The following different models have been explored: 

1) Linear Regression 

Linear regression is a linear model, e.g. a model that assumes a linear relationship 

between the input variables (x) and the single output variable (y). More specifically, that 

y can be calculated from a linear combination of the input variables (x) and a possible 

constant. The model contains an intercept and linear term for each predictor. 
 

2) Pure Quadratic 

The model contains an intercept term and linear and squared terms for each predictor. 
 

3) Quadratic 

The model contains an intercept term, linear and squared terms for each predictor, and 

all products of pairs of distinct predictors. 
 

4) Interactions 

The model contains an intercept, linear term for each predictor, and all products of pairs 

of distinct predictors (no squared terms as base case). 
 

5) Polynomial (polyijk) 

The model is a polynomial with all terms up to degree i in the first predictor, degree j 

in the second predictor, and so on. The maximum degree for each predictor can be 

specified by using a maximum polynom for each predictor. The model contains 
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interaction terms, but the degree of each interaction term does not exceed the 

maximum value of the specified degrees.  

Also, variations of the above models have been used to achieve better results, i.e. even in a 

linear model quadratic terms for e.g. speed over ground, etc. have been introduced.  

Feature Importance 

F-test 

The method examines the importance of each predictor individually using an F-test. An F-test 

compares two variances. The null-hypothesis is that the variances are equal (the features are 

equally important). The f-test uses different models using different number of features to 

deduce if the variance in the residuals are due to randomness or not. A small p-value of the 

test statistic indicates that the corresponding predictor is important. The output scores is –

log(p). Therefore, a large score value indicates that the corresponding predictor is important. 

If a p-value is smaller than eps(0), then the output is Inf. The F-test used in for deriving feature 

importance ranks predictors in X using the response variable Y. Predictor scores, returned as a 

1-by-r numeric vector, where r is the number of ranked predictors. A large score value indicates 

that the corresponding predictor is important. [14] 

Chi-Square Test 

Another variant used for the feature importance tests are based on the Chi-Squared Test. It 

examines whether each predictor variable is independent of a response variable by using 

individual chi-square tests, and then rank features using the p-values of the chi-square test 

statistics. 

Decision Tree Model 

A decision tree is a decision support tool that uses a tree-like model of decisions and their 

possible consequences, including chance event outcomes, resource costs, and utility. It is one 

way to display an algorithm that only contains conditional control statements. Decision trees 

are commonly used in operations research, specifically in decision analysis, to help identify a 

strategy most likely to reach a goal, but are also a popular tool in machine learning. [15].  

The decision tree goes through recursive binary splitting. All features are considered in the 

start and the split that yield the lowest cost, or most information gain, are selected.  For 

example, Gini impurity is used as a cost function. It is a measure of the likelihood of an incorrect 

classification. During the recursive splitting, the decrease in weighted impurity is collected and 

the one with the highest value are the more important feature   
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According to [16], decision trees are constructed using a directed graph G = (V, E), E ⊂ V2, with 

set of nodes V split into three disjoint sets V = 𝒟 ∪ 𝒞 ∪ 𝒯 of decision, chance, and terminal 

nodes, respectively. For each edge e ∈ E we let e1 ∈ V denote its first element (parent node) 

and let e2 ∈ V denote its second element (child node). In further discussion we use the 

following definition: a directed graph is weakly connected if and only if it is possible to reach 

any node from any other by traversing edges in any direction (irrespectively of their 

orientation). An example of a simplified decision tree is shown below. 

 

 

Figure 11: Decision tree example from the survival of passengers on the Titanic, source: [15] 

 

Random forests or random decision forests are an ensemble learning method for classification, 

regression and other tasks that operate by constructing a multitude of decision trees at training 

time and outputting the class that is the mode of the classes (classification) or mean/ average 

prediction (regression) of the individual trees. The method is used for the more advanced 

machine learning.  

Permuted Predictor Importance 

For the decision tree, a predictor importance estimates by permutation of out-of-bag predictor 

observations for random forest of regression trees is used.   
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4. Analysis and Uncertainty Assessment 

4.1 Analysis of machine learning tools 

For each of the machine learning models. The results are presented below for the data with all 

load cases and for the ballast conditions. The output is mainly presented by the standard 

deviation of the model error and a diagram indicating the spread of data for the model vs the 

real data, where the colour in the diagram represents the real fuel consumption for the specific 

data points.  

Grey box model 

The tuned hydrodynamic model fits the data reasonably well as shown in the figure below. 

Parameters modelled include engine, propeller characteristics, propeller load, ship resistance 

in different loading conditions, wind.  

Some parameters are not covered by any high-quality sensor such as sea/ river current as well 

as the parts that are the core of the study, i.e. impact of different ballast conditions and trim. 

Also, variations with time and location are not covered. 

 

Figure 12 Speed-power prediction Comparison model vs. data 

The wide spread of data shown in the grey box model indicate that certain conditions are not 

covered fully by the grey box model. 
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Figure 13: Grey-box model results predicting the engine load, measured vs estimated data. Left: All load cases, 

right: Ballast conditions. The colour represents the actual fuel consumption 

Linear Regression models 

The different linear regression models and feature compositions have resulted in a wide range 

of results. The pure linear model could be enhanced by considering more complex feature set-

ups. Examples were adding of quadratic terms and multiplication of terms. The more complex 

feature set-ups were at the same time not always improving the results for the more advanced 

polynomial or interaction methods. The variation of features was based on a couple of standard 

sets to see the effect on accuracy. One feature set considering mainly speed related features 

(XSpeed), one considering dependencies from the hydrodynamic models with typical 

resistance and propusion equations (XDependent), one with almost all variables (XComplex) 

and one with the best fit (XFinal) have been used. The results from the analysis in ballast 

conditions are shown in the table below for the different standard deviation error. 

 

 Xspeed Xdependent Xcomplex XFinal 

Linear 1.303613 0.96354 0.85648 1.221743 

Pure Quadratic 1.120981 0.925754 1.920782 1.013921 

Quadratic 0.906861 0.869075 0.957242 0.799801 

Interactions 0.932052 0.887968 0.818694 0.818694 

Polynomial 0.875373 1.0706 - 0.736825 
Table 3: Results for different set ups with features against different machine learning methods, the complex model 

was to computationally intense to be performed. 

As can be seen in the table, the more complex feature set-ups perform best with the simpler 

machine learning models, while they are in line or worse with the simpler feature set up. Below, 

the model accuracy for the different regression models is shown in its final set-up of features 

and labels. 
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1) Linear Regression 

 

Figure 14: Results for the linear regression Model predicting the engine load, measured vs estimated data. 

Left: All load cases, right: Ballast conditions 

 

2) Pure Quadratic 

 

Figure 15: Results for the pure quadratic regression Model predicting the engine load, measured vs estimated 

data. Left: All load cases, right: Ballast conditions 
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3) Quadratic 

Figure 16: Results for the quadratic regression Model predicting the engine load, measured vs estimated data. 

Left: All load cases, right: Ballast conditions 

 

4) Interactions 

Figure 17: Results for the interaction regression Model predicting the engine load, measured vs estimated data. 

Left: All load cases, right: Ballast conditions 
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5) Polynomial (polyijk) 

Figure 18: Results for polynomial regression Model predicting the engine load, measured vs estimated data. 

Left: All load cases, right: Ballast conditions 

 

While the linear and pure quadratic models still do not seem to model the full behaviour of the 

vessel, the more complex models get better agreements. The final “linear” regression models 

used resulted in a fair prediction accuracy and was not computer intense with short learning 

and prediction times. The standard model errors are summarised in the table below, where it 

can be observed that the model for the ballast conditions are performing better than for all 

loading conditions. 

Standard Model Error All loading 

conditions 

Ballast 

Linear 176.72 171.34 

Pure Quadratic 133.16 118.24 

Quadratic 133.27 146.00 

Interactions 99.86 84.62 

Polynomial 139.38 123.58 
Table 4: Standard model error of the various linear regression models 
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Feature Importance 

The feature selection importance was based on the Chi-square test and on the F-test 

methodology. The results are presented in the figures below for all “clean” feature data, directly 

based on the measurements. 

Chi-Square Test 

The feature importance based on the Chi-squared method indicates the following parameters 

as dominating: Power on the shaft generator, propeller pitch, propeller RPM, time and speed 

over ground. 

 

Figure 19: Feature Importance for the data set for all linear terms based on a Chi-Squared method. 

 

F-test 

The feature importance based on the Chi-squared method indicates the following parameters 

as dominating: speed over ground, propeller pitch, time, propeller RPM, variation in speed 

(accelerations) and variations in RPM. 

The following interpretation for the F-test is done: 

1) Accelerations and decelerations have a clear impact on consumption.  

2) Most of the features identified have a direct impact on the main research question and 

the aim of the study. 
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Figure 20: Feature importance for the data set for all linear terms based on an F-Test method. (Empty values on 

the left resulted in infinitive values during the F-test 

 

Decision tree 

The decision tree model derived indicate a very good accuracy but was the most computational 

intense model for training and predicting. The model fit was outstandingly best and reflects 

the reality with a small standard deviation.  

 

 

Figure 21: Results for the Decision Tree Model predicting the engine load, measured vs estimated data. The colour 

represents the actual fuel consumption 
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Permuted Predictor Importance 

The predictor importance estimates by permutation of out-of-bag predictor observations for 

random forest of regression trees is shown below.  

 

Figure 22: Permuted Predictor Importance of the different features 

The permuted predictor importance indicates the following parameters as dominating: 

propeller pitch, time, variations in RPM, wind, position of the vessel, and variation in speed 

(accelerations). 

The following interpretation for the F-test is done: 

1) There seems to be a fluctuation of delivered power over time, which could be based on 

changes in the engine settings, docking and repair of the vessel, exchanges of 

equipment or in data collection as well as hull cleaning.  

2) Most of the features identified have a direct impact on the main research question and 

the aim of the study. 
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5. Results 

5.1 Optimised Trim and Ballast Conditions for the ARDEA Case – theoretical 

approach 

The energy needed to propel a vessel is largely dependent on the total weight of it and of the 

speed it is operated at. Substantial savings in energy consumption and correspondingly to 

reduced fuel costs as well as to reduced emissions can be achieved by either lowering the 

speed or optimising the load taken onboard when on ballast voyages. Besides the direct 

savings in energy needed for pumping and treating ballast water there are indirect savings of 

sailing in a lighter condition with less weight onboard as the submerged area or wet surface of 

the vessel is smaller at lower drafts.  

 

Figure 23 Speed-power chart for ARDEA at different load conditions (Total freight refers to load, incl. ballast and 

bunkers). Nb! The order of data plots is reverse compared to the legend order, i.e. lightest condition has lowest 

power requirement. 

The potential of reducing fuel consumption by limiting the load onboard is shown in the chart 

above, where the modelled engine power is indicated for different loading conditions based 

on the hydrodynamic model. Typical load cases in ballast are around 2 000 ton, in loaded 

conditions around 4 000 ton.  
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5.2 Ballast Conditions Tests 

The average and median loading conditions in ballast are around 1800 tons, this results in a 

total load of 2083 tons total load (freshwater, fuel, etc.). Trim is typically 1.74m in ballast 

conditions. 

As the decision tree model has performed best, it is used for the prediction of fuel savings 

achieved in summer ballast conditions. To allow for a suitable comparison that is fair, the same 

conditions are predicted by the model for the average ballast conditions. 

Four different trials have been performed with summer ballast conditions. The details are given 

in the tables below: 

 

M/T A RDEA  

BALLAST 

CONDITION 1425 TON 1525 TON 1625 TON 1725 TON 

VOY. NR. 38/20 45/20 39/20 44/20 

BUNKER/FW 

ON S.O.S.P 

(DEPARTURE) 

 

213.6 / 60 ton 

 

97.6 / 58 ton 

 

197.4 / 55 ton 

 

 160.8 / 54 ton 

BUNKER/FW 

ON E.O.S.P 

(ARRIVAL) 

 

209.8 / 58.8 ton 

 

81.6 / 57 ton 

 

193.5 / 53 ton 

 

135.5 / 45.4 ton 

PITCH 

(PROPELLER) 

8, 5, 4 8 8 8 

Table 5: Conditions at four trails regarding amount of ballast water, bunkers and fresh water onboard at start of 

sea passage and at end of sea passage. Pitch of the propeller is indication of power management. 

 

BALLAST 

INTAKE 

TON 

S.O.S.P 

DATE/TIME 

DRAFT  

F/A 

E.O.S.P 

DATE/TIME 

DRAFT 

 F/A 

WEATHER 

CONDITION 

1425 24.06.2020/23:40 3.5/5.0 m 25.06.2020/08:20 3.5/5.0 m Calm sea 

1525 01.08.2020/02:20 3.6/5.2 m 02.08.2020/07:55 3.6/5.1 m slight 

1625 27.06.2020/14:00 3.8/5.3 m 27.06.2020/21:15 3.8/5.3 m slight 

1725 24.07.2020/22:40 3.6/5.5 m 26.07.2020/21:10 3.6/5.4 m Sea 

moderate, 

SE 6/4 
Table 6: Details on the four trips during trials. Conditions at departure (S.O.S.P) and arrival (E.O.S.P) and observed 

weather conditions. 
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The charts below show the measured and modelled power requirements at average ballast and 

at summer ballast conditions and the expected energy savings for the various trips at different 

speeds.  

 

Figure 24 Trail 1, abt. 1500 ton total load and 1.5 m trim. Required power modelled at summer and average ballast 

condition vs measured data. 2nd chart shows Estimated savings in power need at different speeds. Colour of data 

point indicates fuel consumption. 

The first trip studied is a short trip in light ballast and in calm seas. It shows a good match 

between modelled and measured data. Savings in required power are about 14% at 12 kts 

speed. 

 

 

Figure 25 Trail 2, abt. 1670 ton total load and 1.6 m trim. Required power modelled at summer and average ballast 

condition vs measured data. 2nd chart shows Estimated savings in power need at different speeds. Colour of data 

point indicates fuel consumption. 

The second trip is a longer trip, some 24 hrs, with slight wind conditions. It also shows good 

consistency with modelled values. The power reduction is only some 3,5 – 6 % in the 12-13 kts 

speed range. 
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Figure 26 Trail 3, abt. 1870 ton total load and 1.5 m trim. Required power modelled at summer and average ballast 

condition vs measured data. 2nd chart shows Estimated savings in power need at different speeds. Colour of data 

point indicates fuel consumption. 

Third trip studied is a short trip with slight wind observed. The savings compared to average 

ballast conditions are 7-9% at abt. 12 kts speed. 

 

 

Figure 27 Trail 4, abt. 1920 ton total load and 1.9 m trim. Required power modelled at summer and average ballast 

condition vs measured data. 2nd chart shows Estimated savings in power need at different speeds. Colour of data 

point indicates fuel consumption. 

The fourth trip is a longer voyage (48hrs) with a higher total load and moderate wind conditions 

observed. The reduced resistance results in lower power needs of abt. 4-5% at 12-14 kts. 
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The savings are when sailing at 12 kts are summarised in the table below and related to 

observed wind conditions and total load onboard. 

Table 7 Savings in required power when sailing at 12 kts in different load and weather conditions. 

VOY. NR. 38/20 45/20 39/20 44/20 

TOTAL LOAD 

(APPROX.) 
1500 ton 1670 ton 1870 ton 1920 ton 

WIND CONDITION Calm Slight Slight Moderate 

SAVINGS AT 12 KTS 14% 3,5-6% 7-9% 4-5% 

 

The reduction in resistance and power needed to propel the vessel at 12 kts seems to be 

highest at light load conditions and in calm weather, which corresponds well with sound naval 

architectural theories. 

 

5.3 Potential for “static” Energy Savings 

Reduced use of unnecessary ballast water onboard is beneficial as it reduces the energy 

consumption in several ways, both directly and indirectly, while at sea as well as before and 

after voyages during the ballasting operations:  

1. First it reduces the amount of water that is pumped in and out of the ballast water 

tanks. Less run time on pumps and less energy needed to run them. This also requires 

less maintenance and lowers the costs. 

2. Less water being pumped reduces the need for treatment of ballast water as per the 

Ballast Water Treatment requirements. Less treatment requires less energy and less 

maintenance costs. 

3. Less ballast water onboard reduces the mass of the vessel and thus the inertia and total 

mass to be propelled through water. Less mass requires less energy needed for 

propulsion. 

4. Less mass onboard will result in the vessel laying higher in the water (or decrease the 

draught of the vessel) which reduces the body under the waterline and wet area which 

lowers the resistance. Less resistance translates to less energy needed to propel the 

vessel forward at desired speed. 
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Table 8 Savings in ballast water pumping and treatment when sailing in lighter ballast conditions. Pump time, 

Energy and fuel saving have been doubled as ballast water is pumped both in and out. 

VOY. NR. 38/20 45/20 39/20 44/20 

BALLAST CONDITION 1425 1525 1625 1725 

DELTA BALLAST WATER 

INTAKE (TON) 375 275 175 75 

PUMP TIME SAVED (HRS) 1,88 1,38 0,88 0,38 

ENERGY SAVED (KWH) 

INTAKE AND OUT 351 257 164 70 

MDO SAVED (KG) 70 51 33 14 

 

5.4 Effect of docking 

The vessel has been dry-docked and the hull has been cleaned in late February 2020. As part 

of the evaluation, the derived model is used to magnify the savings based on a clean hull 

compared to a hull with fouling (marine growth). The approach here differs from the one 

described above, as shown in the figure below: 

 

Figure 28: Approach for optimised ballast conditions analysis and savings 
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The graphs below compare the modelled required power in kW before and after hull cleaning 

and actual data measurements after the dry-docking. The first chart (Figure 29) shows the first 

weeks following the dry-docking, while the second charts shows effect in June, four months 

later (Figure 30). The savings start at above 10%, but decrease quickly over time, which is 

expected when the fouling picks up again. The marine growth is especially significant during 

the warmer summer months. 

 

Figure 29: First weeks after dry-docking. Comparison of modelled Required power before (blue) and after (red) 

dry-docking, the real data points (yellow) correspond very well with model. The difference is significant between 

the clean hull and the fouled with savings over 10% initially. 
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Figure 30: Summer period (June). Modelled required power before and after the dry-docking in February. The 

difference is approx. 5% at start of June but is almost negligible at the end of the period. 
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Figure 31 Impact of marine growth on the hull over 180 days. Colour scale indicates days passed following hull 

cleaning. 10-14% saving first months, diagram based on engine delivered power. 

The newly cleaned hull requires significantly less power to sail at 12 kts than with extensive 

fouling. In the case studied above the effect is profound during the first months but decreases 

over time when the sea water temperature rises, as can be seen in Figure 23 above. 
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6. Recommendations and Guidelines 

6.1 Conclusions from this Study 

This study has derived some general results, which can be relevant for other ship owners as 

well and are therefore part of the recommendations. 

A small bitumen tanker such as ARDEA has few ballast tanks and more limited possibilities to 

adjust its trim. With a vessel that has more ballast water tanks, the possibility to systematically 

vary trim conditions to reduce fuel consumptions could result in even higher savings.  

Savings with reduced ballast do not only have an impact as savings when under way, but also 

lead to a reduced need for pumping of water into and out of the ballast tanks and for ballast 

water treatment plants both of which are energy consuming. Energy savings translate to 

positive reductions of both cost for fuel and in amount of emissions such as CO2 and other 

GHG. Further strengthening the business case is the benefits of reduce load and run time on 

ballast water pumps and on the ballast water treatment system which reduces the costs for the 

upkeep of the vessel.  

Data and model conclusions: 

• The approach can be applied directly to other vessels if data are available 

• The model is fit for desired purpose and savings can be quantified with regards to 

ballast water intake optimisation 

• Trim optimisation represents a harder challenge based on the data provided, but 

certain conclusions can be drawn 

• Certain parameters have not been included as intended, as they are either not 

available or are harder to model (wave and current) 

• Even simpler models with low computational needs can give significant support which 

allows simple implementation.  

• There is a large potential for decision support to aid ship managers in processing data 

and drawing the right conclusions to unlock additional savings in energy usage.  

• There are many applications of this data, also tank heating, marine growth, etc., could 

be optimised based on the data collected. 
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Benefits identified: 

• Reduction in resistance leads to reduced power needed in light/ summer ballast 

conditions. 

• Summer ballast implies a reduction in fuel consumption in the range of 5-15% 

on the feasible trips. Largest savings in lighter load conditions and calm 

weather. 

• Reduced run-hours of ballast water treatment equipment and pumps 

• Reduced power consumption of this auxiliary equipment 

• The benefit of collecting and processing operational and voyage data has large 

potential for quick pay-back on time and resources invested. 

• Significant interest of the ship-owner involved, and of others, to make use of results 

Observations from other data extracted from Energy Management system 

• Heating of load strongly dependent on outside temperature → potential for 

reduction 

• Effect of docking of the ship and cleaning of hull visible in data (>10% on power 

needed) -> Indicator for crew and management to plan hull cleaning. 

 

6.2 Recommendations regarding Machine Learning Tools 

Based on the experience from building models and machine learning algorithms obtained in 

this study it is concluded that many times it is recommended to use simple and robust models 

such as decision tree random forest or variations of linear regressions. Grey box models are 

more complex to be implemented but might give faster results (shorter data collection period). 

A grey box model is not needed for all purposes. 

The accuracy is considered enough for most applications.  

The value of reliable, high resolution data and data processing is substantial. The methodology 

used in this study can be applied also in other settings and for other data processing. 
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6.3 Guidelines for Improved Energy-Efficiency based on Collected Data 

1. Recommendation for improved decision support tools based on data analysis 

a. Recommendations on further data to be included in energy saving 

management systems (such as currents, etc.) 

b. Recommendations on how to integrate energy management systems with 

load computer systems’ optimisation of ballast/trim/list for best fuel 

consumption. 

c. Guideline for improved vessel efficiency through big data analysis including 

(quantitative) estimate of eco-efficiency benefits from use of digital data and 

machine learning methods, decisions support tools 

2. Recommendations for Operational procedures for increased energy efficiency 

a. Educate the crew and management in best practices and encourage crew to 

adopt an active approach to operational energy optimisation, such as  

i. minimising ballast water intake when sailing in favourable conditions 

ii. adjusting trim to more favourable conditions 

iii. clean hull when possible - make use of off-hire opportunities due to 

seasonal variations in cargo lows  

iv. Eco-steaming when sailing in ballast condition / out-of-charter 

b. With good quality live stream data on ship performance and conditions 

together with adequate decision support readily available to the crew they can 

actively adjust parameters to optimise for each voyage and operation. 

c. Encourage crew to share experiences on energy optimisation between 

themselves and with the rest of fleet. 

d. Adopt machine learning tools that can canvas through historical data and 

predict the outcome for different actions 

 

6.4 Next Steps 

To penetrate more deeply into the findings of this study it is recommended that future 

studies should be made to: 

• Measure the specific energy needed for cargo tank heating for individual tanks to 

study impact of Cargo tank insulation. 

• As ARDEA has somewhat limited flexibility compared to a traditional 

product/Chemical tanker it is suggested that such vessels be studied as well. They 

should have a greater potential to elaborate with variations in trim, ballast conditions. 

This should be given priority. 
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• Due to COVID-19 effects there was a limited possibility to test and verify the outcome 

and it is desirable that the outcome be further verified by additional trails in summer 

ballast conditions. 

• Further investigate the use of machine learning tools to predict the effects of fouling 

in order to help ship management to decide when hull cleaning would be most 

beneficial.  

• Investigate the possibilities for an artificial notice of readiness it would allow for larger 

flexibility in adjusting actual arrival if the quay is occupied or other matters force the 

vessel to lay-by. Presently the contracts used do not support digital N.O.R, even 

though BIMCO has worked on such clauses. 

In order to take the results onward and come to benefit for other ship owners and operators 

more extensive guidelines and best practices should be compiled and disseminated. 
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